Modeling amplified p53 responses under DNA-PK inhibition in DNA damage response

نویسندگان

  • Tingzhe Sun
  • Xinda Li
  • Pingping Shen
چکیده

During DNA double strand breaks (DSBs) repair, coordinated activation of phosphatidylinositol 3-kinase (PI3K)-like kinases can activate p53 signaling pathway. Recent findings have identified novel interplays among these kinases demonstrating amplified first p53 pulses under DNA-PK inhibition. However, no theoretical model has been developed to characterize such dynamics. In current work, we modeled the prolonged p53 pulses with DNA-PK inhibitor. We could identify a dose-dependent increase in the first pulse amplitude and width. Meanwhile, weakened DNA-PK mediated ATM inhibition was insufficient to reproduce such dynamic behavior. Moreover, the information flow was shifted predominantly to the first pulse under DNA-PK inhibition. Furthermore, the amplified p53 responses were relatively robust. Taken together, our model can faithfully replicate amplified p53 responses under DNA-PK inhibition and provide insights into cell fate decision by manipulating p53 dynamics.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DNA-PK suppresses a p53-independent apoptotic response to DNA damage.

p53 is required for DNA damage-induced apoptosis, which is central to its function as a tumour suppressor. Here, we show that the apoptotic defect of p53-deficient cells is nearly completely rescued by inactivation of any of the three subunits of the DNA repair holoenzyme DNA-dependent protein kinase (DNA-PK). Intestinal crypt cells from p53 nullizygous mice were resistant to radiation-induced ...

متن کامل

DNA-dependent protein kinase is not required for accumulation of p53 or cell cycle arrest after DNA damage.

In response to DNA damage, cells transduce a signal that leads to accumulation and activation of p53 protein, transcriptional induction of several genes, including p21, gadd45, and gadd153, and cell cycle arrest. One hypothesis is that the signal is mediated by DNA-dependent protein kinase (DNA-PK), which consists of a catalytic subunit (DNA-PKcs) and a regulatory subunit (Ku). DNA-PK has sever...

متن کامل

DNA Damage-Induced Phosphorylation of p53 Alleviates Inhibition by MDM2

DNA-damaging agents signal to p53 through as yet unidentified posttranscriptional mechanisms. Here we show that phosphorylation of human p53 at serine 15 occurs after DNA damage and that this leads to reduced interaction of p53 with its negative regulator, the oncoprotein MDM2, in vivo and in vitro. Furthermore, using purified DNA-dependent protein kinase (DNA-PK), we demonstrate that phosphory...

متن کامل

Late activation of stress kinases (SAPK/JNK) by genotoxins requires the DNA repair proteins DNA-PKcs and CSB.

Although genotoxic agents are powerful inducers of stress kinases (SAPK/JNK), the contribution of DNA damage itself to this response is unknown. Therefore, SAPK/JNK activation of cells harboring specific defects in DNA damage-recognition mechanisms was studied. Dual phosphorylation of SAPK/JNK by the genotoxin methyl methanesulfonate (MMS) occurred in two waves. The early response (< or = 2 h a...

متن کامل

Enhanced phosphorylation of p53 serine 18 following DNA damage in DNA-dependent protein kinase catalytic subunit-deficient cells.

DNA-dependent protein kinase (DNA-PK) controls signal transduction following DNA damage. However, the molecular mechanism of the signal transduction has been elusive. A number of candidates for substrates of DNA-PK have been reported on the basis of the in vitro assay system. In particular, the Ser-15 amino acid residue in p53 was one of the first such in vitro substrates to be described, and i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017